

Materials for High-Temperature Thermochemical Processes

D. F. Wilson & W. R. Corwin, Oak Ridge National Laboratory
S. Sherman & J. Kolts, Idaho National Laboratory
P. Pickard, Sandia National Laboratory

DOE Hydrogen Program Annual Review
Crystal City, Virginia
May 23-26, 2005

PDP20

NHI Materials for TC Processes Task Focuses on Planning & Coordinating

Timeline

- ❖ Project start date FY04
- ❖ Project end date FY08
- ❖ Percent complete ~10%

Budget

- ❖ Total project funding 1M\$
 - ◆ DOE share: 1M
 - Funding received in FY04: 0.05M
- ❖ FY05 Funding: 0.1M

Barriers

- Thermochemical (TC) process service environments
 - High temperature
 - Corrosive
 - Lack of sufficient testing capabilities for TC conditions

Partners

NHI TC Program

- Industry (GA, Cerametec)
- Universities (UNLV, MIT, UCB)
- **♦ Labs (INL, ORNL, SNL)**

NHI Materials for TC Processes Plans and Coordinates R&D through FY 2008

Objectives of Materials for High-Temperature Thermochemical Processes Are:

- Assess range of service conditions for NHI Thermochemical processes (Sulfur cycles, Ca-Br, others)
- Identify candidate materials of construction for cycle components (alloys, ceramics, refractories)
- Develop materials testing approach and priorities to support NHI TC cycle development (NHI Materials Development and Testing Plan)
- Coordinate materials planning for NHI and monitor "evolving" research and development activities

System Interface and High Temperature Heat Exchanger Programs at INL & UNLV are part of this activity (S. Sherman, INL, coordinates)

Thermochemical Cycle R&D Areas Include:

- Thermochemical Cycles (Scaling, efficiency)
 - Sulfur cycles (S-I, Hybrid)
 - ◆ Alternate, Ca-Br
- System Interface (High temp materials and HX design

S-I Thermochemical Cycle

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Calcium Bromine Cycle

Other TC Cycles with Potential for Lower Temperature or Higher Efficiency Include:

- **❖Copper chlorine (GRI H-6)**
 - <550°C; low peak temperature</p>
 - Issue: higher efficiency electrolysis
- ❖Iron chloride (Ispra Mark 9, GRI I-6)
 - ♦ 650°C; low peak temperature
 - Issue: suppress competing chemical reaction
- ❖Iron chlorine (GRI B-1)
 - ♦ 925°C; more mature
 - Issue: suppress competing chemical reaction
- ❖Copper sulfur (GRI H-5)
 - ♦ 827-900°C; potential for higher efficiency
 - Issue: economics of scaling hybrid processes; higher efficiency electrolysis
- Vanadium chlorine
 - 925°C; full flowsheet available
 - Issue: high peak temperature; conflicting data on one reaction

Approach to Planning & Coordinating Includes:

- Understand the chemistry and temperature of various process steps
- Identify possible materials for use in these steps
- Establish test program to evaluate the materials/process

Materials for High-Temperature Thermochemical Processes - Technical Accomplishments Include:

- Completed assessment of NHI TC cycle service conditions, candidate materials
- Issued report: Materials Requirements for Nuclear Hydrogen Generation Systems
 - Identifies chemistry and temperatures for key process steps
 - Identifies candidate materials for major component in NHI TC cycles
 - Identifies testing approach and prioritizes materials R&D needs

Heat Exchanger Materials and Design Are Key Issues for Thermochemical Cycles

Advanced Ceramic Materials (SiC, C-SiC)

Coordinated by S. Sherman at INL

JT-BATTELLE

Technical Accomplishment-Isolate Chemical and Temperature Environments (H₂SO₄ & HI) Generation

S-I Bunsen Reaction (120 – 130 °C; 0.1 to 0.3 MPa)

Stage	Environment (wt%)	Candidate material
Main Reaction	8 H ₂ O; 2 H ₂ SO ₄ ;	
	80 I ₂ ; 7 HI; 0.5 O ₂ ;	
H ₂ SO ₄ Boost Reactor	1.7 SO ₂ 57 H ₂ O; 43 H ₂ SO ₄ ;	Ta, Zr, Si_3N_4 , SiO_2 , Al_2O_3 , B2, 242, Hastelloy C-276, and
	0.1 SO ₂ ; trace I ₂	Nb-1Zr coating
HI Phase SO ₂ Stripper HX	trace H ₂ SO ₄ ; 87 I ₂ ; 7 HI; 0.2 SO ₂ ; 6 H ₂ O;	
Vessel for Bunsen Reaction HXs DAK RIDGE NATIONAL LABORA J. S. DEPARTMENT OF ENERGY	Ranges listed above	Florocarbon-lined (Teflon, Kynar, etc.) low alloy steels

Technical Accomplishment-Isolate Chemical and Temperature Environments (H₂SO₄ Concentration)

S-I H₂SO₄ Concentrator

Stage	Temperature (°C)	Pressure (MPa)	Environment (wt%)	Candidate materials
Primary side	<450	0.1-6.8	He/molten salt	Hastelloy B2 & N, SiC, C-C composites, C276,
Secondary side	<400	0.1	$0-0.1 SO_2$; $57-98 H_2SO_4$; $2-42 H_2O$; trace I_2	800/800H, Hi-Si steel (Duriclor 51M), glass-lined steel, Au, Pt, & Nb coatings

Technical Accomplishment-Isolate Chemical and Temperature Environments (H₂SO₄ Vaporizer)

S-I H₂SO₄ Vaporizer

Stage	Temperature (°C)	Pressure (MPa)	Environment (wt%)	Candidate materials
Primary side	580 to 380	0.1-6.8	He/molten salt	Hastelloy B2, G & N, SiC, C-C composites, Si ₃ N ₄ , C276,
Secondary side	330 to 530	0.7	Liquid-Vapor $98-71 \text{ H}_2\text{SO}_4$; $0-22 \text{ SO}_3$; $2-7 \text{ H}_2\text{O}$;	800/800H, Hi-Si steel (Duriclor 51M), glass-lined steel, Au-, Pt-, & Nb-coatings

Technical Accomplishment-Isolate Chemical and Temperature Environments (H₂SO₄ Decomposer)

S-I H₂SO₄ Decomposer

Stage	Temperature (°C)	Pressure (MPa)	Environment (wt%)	Candidate materials
Primary side	950 to 800	0.1-6.8	He/molten salt	Hastelloy B2, SiC, C-C composites, Si ₃ N ₄ , 242, 214,
Secondary side	530 to 900	0.7	Inlet-Outlet 71-20 H ₂ SO ₄ ; 22-13 SO ₃ ; 7-16 H ₂ O; 0-40 SO ₂ ; 0-10 O ₂	C276, 800HT, Nb-1Zr, Au-, Pt-, Cu-, & glass-coatings, Pt-, Cu-, & Fe ₂ O ₃ -catalysts

Technical Accomplishment-Isolate Chemical and Temperature Environments (HI Decomposition)

S-I HIx Reactive Distillation

Stage	Temperature (°C)	Pressure (MPa)	Environment (wt%)	Candidate materials
Inlet feed stream	262	2.2	11 HI; 81 I ₂ ; 8 H ₂ O	
Outlet column bottom	310	2.2	1 HI; 98 I ₂ ; 1 H ₂ O	Ta, Ta-10W, Mo, Nb, Nb-1Zr, Zircaloy 702, SiC, vitreous carbon,
H ₂ scrubber/ condenser	221 to 25	2.2	66 HI; 32 H ₂ O; 2 H ₂	C-C composites, Bulk metallic glasses

Technical Accomplishment-Isolate Chemical and Temperature Environments (HI Decomposition)

U. S. DEPARTMENT OF ENERGY

S-I HIx Phosphoric Acid Reactor

132 to 211	0.1	96 H ₃ PO ₄ ; 4 H ₂ O	
		2	
120 to 241	0.3-0.9	74 H ₃ PO ₄ ;	
		11 HI; 4 I ₂ ; 10 H ₂ O	TBD based on relevant
250	0.95	87 H ₃ PO ₄ ; 13 H ₂ O	industrial experience
120	0.2-0.7	99.9 I ₂ ; 0.1 H ₂ O	
	250	250 0.95 120 0.2-0.7	11 HI; 4 I ₂ ; 10 H ₂ O 250 0.95 87 H ₃ PO ₄ ; 13 H ₂ O 120 0.2-0.7 99.9 I ₂ ; 0.1 H ₂ O

Materials Testing for NHI Thermochemical Cycles Has Been Initiated - HI Decomposition

Screening

_>

Development

Prototype

Immersion Coupons

Crack Initiation & Growth,
Long Term Testing,
Cladding

S-I Loop/Pilot Plant Testing

❖ Work being performed by GA

- ◆ S-I corrosion test facilities constructed for corrosion tests on selected coupons and stress specimens
- Screening tests underway for HI section materials
- Longer term testing, advanced materials activities being defined

Immersion corrosion test system II

Materials Testing for HI_x Section Has Begun

Refractory metals and ceramics have shown the best corrosion performance to date

❖HI_x materials testing (UNLV and GA)

◆ 22 coupons from four classes of materials: refractory and reactive metals, superalloys and ceramics, have been screened.

Excellent	Good	Fair	Poor
Ta-40Nb,	Ta, Ta-	Mo-47Re,	Mo, C-276,
Nb-1Zr,	10W, Nb,	Alumina	Haynes
Nb-10Hf,	Nb-7.5Ta,		188,
SiC(CVD),	SiC		graphite*,
SiC(Ceram	(sintered)		Zr702,
atec	Si-SiC		Zr705
sintered),	(3 kinds)		
Mullite			

^{*} structurally sound but absorbed HIx

- Long term corrosion performance testing has started
 - effect of HI, on stress corrosion
 - cost reduction through cladding

Reaction Beds During HBr Production (0.1 MPa)

Stage	Temperature (°C)	Environment (wt%)	Candidate materials		
HX primary side		He/molten salt	Hastelloy N, 232,		
HX secondary side	750	100 CaBr ₂ &	214, 713 cast, RA330		
Bed support		H ₂ O to 100 CaO & HBr	Ceramics/catalysts TBD		
Reaction vessel	300 to 750	100 H ₂ O & 0 HBr to 0 H ₂ O	If insulated, Ni-Clad low alloy steel, If not, 713LC, 214, Ni ₃ Al, MA956, MA754		
Reaction 750 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY INSUITATION		& 100 HBr with trace O ₂	CaTiO ₃ , Ale BATTELLE PDP20 1		

Reaction Beds During Regeneration (0.1 MPa)

	Eddo Barri	gragomoram	(m. a)
Stage	Temperature (°C)	Environment (wt%)	Candidate materials
HX primary		He/molten salt	
side			Hastelloy N, 232,
HX secondary	500		214, 713 cast, RA330
side	<590	100 Br ₂ & CaO	
Bed support		to 100 CaBr ₂ &	Ceramics/catalysts
200.00.00.00		O_2	TBD
		4-5-5-6	
Reaction	200 to 590		If insulated, Ni-Clad
vessel		100 Dr. 9 0 0	low alloy steel,
		100 Br ₂ & 0 O ₂	If not, 713LC, 214,
		to 0 Br ₂ &	Ni ₃ Al, MA956, MA754
Reaction	<590	100 O ₂	
OVE STEEPE NATIONAL		2	CaTiO ₃ , Al ₂ O ₃
insulation of En	NERGY		PDP20 1
U.S. DEPARTMENT OF EN INSUIATION	NERGY		UF-BATTEL

Reaction Beds to Plasmatron HX (0.1 MPa)

Reaction beas to Flasination Tix (0.1 Wil a)					
Stage	Temperature (°C)	Environment (wt%)	Candidate materials		
Primary side	750 to 50	100 HBr & 0.1 H2O to 3 Br ₂ & 97 HBr with trace H_2O	Ni, B2, 214, 232, Hastelloy N, stainless steel, Si ₃ N ₄ , Nb-1Zr		
Secondary side	25	H ₂ O			
Plasmatron HX (0.1 MPa)					
Stage	Temperature (°C)	Environment (wt%)	Candidate materials		
Inlet	50	3 Br ₂ & 97 HBr with trace H ₂ O	300 series stainless		
Outlet OAK RIDGE NATIONAL U. S. DEPARTMENT OF E		50 HBr, 25 Br ₂ , & 25 H ₂	steel UT-BATTELLE		

PDP20 20

Other Components

Stage	Temperature (°C)	Pressure (MPa)	Environmen t (wt%)	Candidate materials
Multistage compressors	100 to 335	0.005 to 3.5	30 H ₂ , 4 Br ₂ , & 2 H ₂ O	TBD based on industrial experience
Steam superheater Primary side	750 to 850	6.8-0.1	He/molten salt	617, 625, 230,
Steam superheater Secondary side	750	0.1	H ₂ O	B2, 214, 242, Hastelloy N

Summary of High Priority R&D

- Prioritized high due to technical viability issues associated with high temperature/corrosive environments
 - Sulfur Cycles (S-I, Hybrid S)
 - H₂SO₄ concentrator, vaporizer
 - HI reactive distillation column
 - Inorganic membranes
 - Potential for increased product formation
 - Potential for reduced operating temperature
 - ◆ CaBr
 - Reactive bed HX
 - Ca-Br/HBr HX
 - Reaction bed vessel

Future Work

FY05 – Revise and update materials selection document

- FY06 Develop a prioritized, integrated materials evaluation program
 - So as to establish engineering feasibility

Publications and Presentations

- Materials Requirements for Nuclear Hydrogen Generation Systems, ORNL TM, 2004
- **❖ W. R. Corwin, NHI Materials Selection and R&D** Plan, NHI Materials Planning Meeting, UNLV, Las Vegas, Nevada, May 17, 2004
- W. R. Corwin, NHI Materials Selection and R&D Plan & NHI Membrane Studies Update, NHI Semiannual Program Review, DOE HQ, Germantown, Maryland, September 21-22, 2004
- W. R. Corwin, High Priority Materials R&D for NHI, NHI Materials Program Review Meeting, ORNL, February 10, 2005

Hydrogen Safety

What is the most significant hydrogen hazard associated with this project?

Hydrogen explosiveness/flammability (4 to 75 vol.%) during performance evaluation

What are you doing to deal with this hazard?

- Work will be performed under the safety envelopes of the various testing organizations
- Use both administrative and physical controls
 - Work review/authorization
 - Volume/pressure controls
 - Sensors

